Индекс цитирования

Авторизация






Забыли пароль?

Обложка журнала

НОВОСТИ

(11/10) Ученые из ИФХЭ РАН и МГУ под руководством Ольги Виноградовой поняли, как «полосатая» гидрофобность..
   Ученые из ИФХЭ РАН и МГУ под руководством Ольги Виноградовой поняли, как «полосатая» гидрофобность меняет течение жидкости     ...
Read More ...
(11/10) Ученые обнаружили пути проникновения вирусов гриппа и ВИЧ в организм
Ученые ИФХЭ РАН, НИТУ МИСиС, МФТИ и ряда других российских научных организаций изучили и описали би...
Read More ...
(17/04) Курс “Анализ геномных данных”, Москва, 2 – 11 июля 2012
Уважаемые коллеги, Со 2 по 11 июля 2012 года Учебный центр Института биологии гена РАН организует практический десятидневный курс по статистическому анализу геномных дан...
Read More ...
(12/03) Впервые получено изображение атомов, движущихся в молекуле
Исследователи из Университетов Огайо и Канзаса впервые смогли получить изображения атомов, движущихся в молекуле. С помощью ультрабыстрого лазера исследователи выбивали элек...
Read More ...

Теплопроводность графена Печать
(0 голосов)
24.04.2010 г.

Image

До недавнего времени закономерности, объясняющие особенности теплопроводности графена, находящегося в контакте с другими материалами (вероятно, что именно в таком состоянии он будет применяться в электронике будущего), оставались загадкой.

Результаты нового исследования позволяют говорит о том, что находящийся в контакте с твердой поверхностью графен отличается исключительно высокой теплопроводностью.

Модель схемы, примененной для изучения теплопроводности листочка графена (более горячие области графенового листа отмечены красным, более холодные – синим) на подложке из диоксида кремния. (Рисунок из Science, 2010, 328, 213)

Результаты исследования могут ускорить разработку электронных устройств на основе графена, предлагая экспериментальный метод для измерения и теоретические выкладки для понимания образования и рассеивания теплоты в электронных схемах, некоторые компоненты которых состоят из графена.

Ряд полезных свойств графена, включая его исключительную электропроводность и механическую прочность, обуславливают то, что в настоящее время графен представляет наноматериал, изучению которого посвящено значительное количество исследований. По мере уменьшения электронных устройств и увеличении плотности электронных схем на единицу площади надежность работы такого устройства будет определяться теплопроводностью компонентов микросхемы, рассеивающих тепловую энергию и предотвращающих перегревание электронных компонентов. Несмотря на очевидную важность исследований в области изучения теплопроводности графена, экспериментальные сложности не позволяли изучать теплопроводность графена в достаточном объеме.

Строение, особенности связывания и незначительная атомная масса обуславливают высокую теплопроводность различных аллотропных модификаций углерода, включая алмаз, графит и углеродные нанотрубки. Проведенные ранее исследования свободно подвешенного листа графена показали, что и эта модификация углерода отличается высоким значением коэффициента теплопроводности (К). Определенная для «подвешенного» графена теплопроводность составляла около 5000 Вт/(м*К), что в 2.5 раза больше, чем у прежнего «рекордсмена по коэффициенту теплопроводности» – алмаза. Тем не менее, наиболее вероятно, что при использовании графен будет находиться в контакте с другими материалами.

Для измерения коэффициента теплопроводности в условиях контакта с другими материалами Джае Хун Сол (Jae Hun Seol), Ли Ши (Li Shi) и Родни Руофф (Rodney S. Ruoff) из Университета Техаса разработали микромасштабный электронный термометр и использовал его для измерения теплопроводных свойств двух образцов. Первоначально были изучены свойства композитного материала, представляющего монослой графена на стандартной подложке – диоксиде кремния, затем графен удалили и изучили теплопроводность оставшейся подложки.

Различие между свойствами двух образцов позволило определить, что коэффициент теплопроводности однослойного графена, нанесенного на подложку (при комнатной температуре) составляет около 600 Вт/(м*К). Это значение почти на порядок ниже теплопроводности «подвешенного» графена, однако в два и 50 раза выше теплопроводности применяющихся в современной электронике меди и кремния, соответственно.

Для лучшего понимания различия между термическими свойствами «подвешенного» графена и графена на подложке исследователи изучили две этих системы с помощью компьютерного моделирования. Было обнаружено, что отсутствие стерического соответствия между графеном и подложкой приводит к тому, что фотоны, образующиеся в результате колебаний решетки графена, могут «стекать» в твердую подложку, таким образом понижая коэффициент теплопроводности.

Источник: Science, 2010, 328, 213

 

 

Добавить комментарий


Защитный код
Обновить