Индекс цитирования

Авторизация






Забыли пароль?

Обложка журнала

НОВОСТИ

(17/04) Курс “Анализ геномных данных”, Москва, 2 – 11 июля 2012
Уважаемые коллеги, Со 2 по 11 июля 2012 года Учебный центр Института биологии гена РАН организует практический десятидневный курс по статистическому анализу геномных дан...
Read More ...
(12/03) Впервые получено изображение атомов, движущихся в молекуле
Исследователи из Университетов Огайо и Канзаса впервые смогли получить изображения атомов, движущихся в молекуле. С помощью ультрабыстрого лазера исследователи выбивали элек...
Read More ...
(12/03) Наблюдение за распределением зарядов в молекуле
Исследователи из Швейцарии впервые с помощью экспериментов смогли визуализировать распределение зарядов отдельной молекуле. Предполагается, что результаты работы могут при...
Read More ...
(22/01) Простой способ разделения углеродных нанотрубок
Существуют одностенные углеродные нанотрубки [single-walled carbon nanotubes (SWCNT)] с металлическим и полупроводниковым типом проводимости, однако для использования этих...
Read More ...

Ссылки

Нанометр


Исследователи выяснили, как растут нанокристаллы Печать
(1 голос)
27.10.2010 г.

Image

Впервые исследователям удалось наблюдать за самыми ранними стадиями образования и роста нанокристаллов.

Специалисты по материаловедению полагают, что наночастицы являются основой технологий будущего; свойства наночастиц зависят от их строения, состава, размера и формы. Результаты новой работы позволят разработать способы контроля роста наночастиц с заданной формами и свойствами. Исследователи надеются, что информация об особенностях образования и роста наночастиц может помочь при разработке систем для преобразования солнечной энергии в электрическую, создания химических и биологических сенсоров.

Исследователям удалось наблюдать начальные стадии роста наночастиц. (Рисунок из Nano Letters, 2010; 10 (9): 3747 DOI: 10.1021/nl102458k)

Один из авторов исследования, Венж Янг (Wenge Yang) из Института Карнеги поясняет, что, как правило, очень трудно следить за образованием и ростом наночастиц, так как для оборудования, традиционно применяющегося для изучения этих систем, необходимо вакуумирование исследуемого образца, а рост большинства наночастиц происходит в жидкой фазе. Эти обстоятельства не позволяли определить, как условия влияют на рост частиц и их свойства, что, в свою очередь, не позволяет подобрать условия для получения наночастиц с требуемым строением.

Новое исследование осуществлялось с помощью устройства – источника высокоэнергетических фотонов [Advanced Photon Source (APS)], расположенного в Национальной Лаборатории Аргонны.

Исследователи использовали высокоэнергетические рентгеновские лазеры APS для получения дифракционной картины образующихся наноматериалов. Высокая проникающая способность и точная фокусировка излучения от APS позволили исследователям наблюдать за ростом кристаллов непосредственно с момента их образования. Дифракционные картины и информация о рассеивании излучения ультракоротких электромагнитных волн позволили раскрыть все секреты строения этих необычных частиц. Весьма часто химические реакции протекают за очень краткие промежутки времени, однако сфокусированное высокоэнергетическое рентгеновское излучение и детектор, позволяющий фиксировать изменения дифракционной картины в рекордно сжатые сроки, смогли помочь исследователям в решении этой непростой задачи – получении полной разрешенной во времени картины зарождения и роста наночастиц, а также влияния условий на форму, размеры и свойства зарождающихся наночастиц.

В рамках работ, проводимых в Национальной Лаборатории Аргонны, исследователи применяют новые методики синхротронного излучения для изучения строения и динамического поведения материалов в экстремальных условиях. Исследователи полагают, что результаты подобных исследований смогут найти применение в создании новых материалов (в том числе и «нано-») с необходимыми свойствами.

Исследователи, первыми наблюдавшие рост нанокристаллов в режиме реального времени, отмечают, что работа в направлении изучения быстро протекающих химических и физических процессов. Главная цель – использование новых методов для изучения влияния температуры и давления на протекание химических процессов и разработка новых материалов с полезными функциональными свойствами.

Источник: Nano Letters, 2010; 10 (9): 3747 DOI: 10.1021/nl102458k

 

Добавить комментарий


Защитный код
Обновить