Индекс цитирования

Авторизация






Забыли пароль?

Обложка журнала

НОВОСТИ

(11/10) Ученые из ИФХЭ РАН и МГУ под руководством Ольги Виноградовой поняли, как «полосатая» гидрофобность..
   Ученые из ИФХЭ РАН и МГУ под руководством Ольги Виноградовой поняли, как «полосатая» гидрофобность меняет течение жидкости     ...
Read More ...
(11/10) Ученые обнаружили пути проникновения вирусов гриппа и ВИЧ в организм
Ученые ИФХЭ РАН, НИТУ МИСиС, МФТИ и ряда других российских научных организаций изучили и описали би...
Read More ...
(17/04) Курс “Анализ геномных данных”, Москва, 2 – 11 июля 2012
Уважаемые коллеги, Со 2 по 11 июля 2012 года Учебный центр Института биологии гена РАН организует практический десятидневный курс по статистическому анализу геномных дан...
Read More ...
(12/03) Впервые получено изображение атомов, движущихся в молекуле
Исследователи из Университетов Огайо и Канзаса впервые смогли получить изображения атомов, движущихся в молекуле. С помощью ультрабыстрого лазера исследователи выбивали элек...
Read More ...

Серные наноэлектроды позволили втрое увеличить ёмкость литиевых аккумуляторов Печать
(0 голосов)
21.05.2009 г.

Ученые разработали новый прототип литиевых аккумуляторов, емкость которых втрое превышает емкость современных батарей благодаря использования серы в качестве одного из электродов.

Добиться высокой скорости работы серного катода ученым удалось, применив нанотехнологический подход с использованием пористого углеродного материала с высокой электропроводностью. По словам ученых, продемонстрированный подход к созданию композитных материалов может найти применение в ряде других областей науки и технологий.

Метод производства катода заключается в заливке расплавленной серы в поры структуры, построенной из стержней пористого углерода толщиной всего в 6,5 нанометров. Эти стержни в структуре разделены пустыми капиллярами толщиной 3–4 нанометра. При заливке сера под действием капиллярных сил сама собой засасывается в капилляры, где затвердевает по мере охлаждения. В результате такого процесса сера равномерно распределяется по структуре из углерода, что позволяет достичь чрезвычайно большой площади контакта между электропроводящей углеродной структурой и диэлектрической серой.

«Этот композитный материал обладает емкостью по отношению к ионам лития, составляющей 80% от емкости чистой серы, что в три раза превышает емкость катодов литиевых аккумуляторов, используемых в настоящее время. При этом электрод обладает стабильностью и большой скоростью работы», – говорит Линда Назар из Университета Ватерлоо, описавшая новые батареи в статье, принятой к публикации в Nature Materials.

Попытки создать литиево-серные аккумуляторы продолжаются уже второе десятилетие, так как такой тип батарей отличается значительно большим количеством запасаемой энергии, а так же дешевизной благодаря доступности серы. В ходе работы аккумулятора материал катода, который составляют молекулы серы S8, должен принять в свою структуру ионы лития Li+, мигрирующие через слой полимерного электролита от второго электрода, называемого анодом, и электроны.

Трудность создания такого аккумулятора заключается как раз в изготовлении серного катода – электрода, запасающего и отдающего ионы лития в процессе разряда и перезарядки соответственно. Для того, чтобы аккумулятор мог развить большую мощность, катод должен хорошо проводить электрический ток, однако сера является практически диэлектриком. Так как сера является диэлектриком и практически не проводит электрический ток в нормальных условиях, этот процесс идет очень медленно, что приводит к низкой мощности аккумулятора и очень долгой его перезарядке.

1. PhysOrg: Major breakthrough in lithium battery technology reported

2. http://www.nanonewsnet.ru