ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА МАГНИТОДИЭЛЕКТРИЧЕСКИЙ ОТКЛИК В ДВУХСЛОЙНЫХ КОМПОЗИТАХ Рb $Zr_{0.53}Ti_{0.47}O_3$ - $Mn_{0.4}Zn_{0.6}Fe_2O_4$

С.А. Гриднев, А.В. Калгин

Воронежский государственный технический университет e-mail: kalgin alexandr@mail.ru

Двухслойные структуры $PbZr_{0.53}Ti_{0.47}O_3$ - $Mn_{0.4}Zn_{0.6}Fe_2O_4$ (PZT-MZF) изготавливали путем склеивания предварительно поляризованной пьезокерамики PZT и феррита MZF. Для магнитодиэлектрических (МД) измерений применялся образец композита, содержащий плоскопараллельные пластины PZT и MZF с толщинами 0.3 мм и 0.3 мм соответственно. Отношение длины к ширине для PZT и MZF составляло 8 мм. Пластины PZT и MZF склеивались эпоксидным компаундом таким образом, чтобы угол между направлением поляризации PZT и магнитным полем принимал значение 90^{0} . Электроды наносились методом вжигания серебряной пасты на поверхности пьезоэлемента.

MД эффект был изучен путем измерения диэлектрической проницаемости ϵ в постоянном магнитном поле $H_=$ емкостным мостом. Изменение величины $H_=$ осуществлялось изменением зазора между полюсами постоянных магнитов, в котором расположен исследуемый образец. Величину MД эффекта обычно характеризуют магнитодиэлектрическим коэффициентом

$$\Delta \varepsilon / \varepsilon(0) = \frac{\varepsilon(\omega, H) - \varepsilon(\omega, 0)}{\varepsilon(\omega, 0)},\tag{1}$$

где $\varepsilon(\omega,0)$ - диэлектрическая проницаемость в отсутствие магнитного поля, $\varepsilon(\omega,H)$ - диэлектрическая проницаемость при действии магнитного поля.

Выявлено, что с повышением температуры величина МД коэффициента возрастает. Такое поведение $\Delta\epsilon/\epsilon(0)$, по-видимому, объясняется связью между деформацией в пьезоэлектрической пластине и магнитным упорядочением в ферритовой пластине под действием приложенного постоянного магнитного поля. Анализ, проведенный на основе термодинамического подхода [1], дает качественное согласие с экспериментом.

Работа выполнена при финансовой поддержке Федерального агентства по образованию Минобрнауки РФ (проект РНП 2.1.1/4406).

Литература

1. Gridnev S.A., Kalgin A.V., and V.A. Chernyh. Magnetodielectric effect in two-layer PZT-MZF magnetoelectric composite // Abstracts of the International conference on functional materials and nanotechnologies. Latvia, Riga. 2009. P. 150.