СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА $K_3(H_3O)[(UO_2)_2(SeO_4)_4(H_2O)_2](H_2O)_5$

О.С. Тюменцева¹, В.В. Гуржий², С.В. Кривовичев², И.Г. Тананаев¹

¹ИФХЭ РАН, 119991, Москва, Ленинский проспект, д.31, корп. 4 e-mail: circumstance-ol@mail.ru ²СПбГУ, Санкт-Петербург, 199034, Университетская наб. 7/9

Монокристаллы $K_3(H_3O)[(UO_2)_2(SeO_4)_4(H_2O)_2](H_2O)_5$ получены изотермического испарения при комнатной температуре из водного раствора нитрата уранила (0.05 г UO₂(NO₃)₂·6H₂O), гидроксида калия (0.1 г KOH) и селеновой кислоты (0.2 мл H₂SeO₄). Смесь была растворена в 2 мл воды. Для структурного анализа был отобран кристалл и помещён на дифрактометр Stoe IPDS II, оснащённый плоским детектором типа Image Plate. Параметры элементарной ячейки определены и уточнены методом наименьших квадратов на основе 24448 рефлексов с 20 в пределах 3.44–58.48°. Ячейка имеет моноклинную симметрию, a = 17.8377(5) Å, b = 8.1478(5) Å, c =23.696(1) Å, $\beta = 131.622(2)$ °, V = 2574.5(2) Å³. Законы погасания и статистика распределения рефлексов определили пространственную группу $P2_1/c$. Поправка на поглощение была введена с учётом формы кристалла. Структура была решена прямыми методами и уточнена до $R_1 = 0.0516$ ($wR_2 = 0.1233$) для 4075 рефлексов с $|F_0| \ge 4\sigma_F$. Основу структуры составляют слоистые комплексы состава $[(UO_2)_2(SeO_4)_4(H_2O)_2]^{4-}$, состоящие из координационных полиэдров U и Se, объединённых через мостиковые атомы кислорода. Селенатоуранилатные слои параллельны плоскости (100). В структуре присутствуют два кристаллографически неэквивалентных атома урана, каждый из которых образует связи U^{6+} — O^{2-} : две короткие (1.78(2)—1.81(2) Å, 1.74(3)— 1.81(2) Å для U1 и U2, соответственно), которые формируют уранильный катион $[O^{2-}]$ $=U^{6+}=O^{2-}l^{2+}$, и пять более длинных (2.32(2)–2.42(2) Å, 2.30(2)–2.50(2) Å для U1 и U2, соответственно) в экваториальной плоскости, что ведёт к формированию пентагональной бипирамиды. Селенатные тетраэдры SeO_4 (<Se-O> = 1.64, 1.64, 1.64,1.63 Å для Se1, Se2, Se3 и Se4, соответственно) являются бидентатно-мостиковыми. Образуя связи с полиэдрами урана по двум вершинам, селенатные тетраэдры лежат в плоскости неорганического слоя, причём свободные вершины, чередуясь, направлены то вверх, то вниз. Три кристаллографически независимых атома калия располагаются в межслоевом пространстве и окружены семью атомами кислорода, каждый (2.70(3) -3.22(2) Å, 2.72(2) - 2.90(2) Å, 2.71(2) - 3.03(2) Å для К1, К2 и К3, соответственно). Наряду с атомами калия в межслоевом пространстве располагаются пять кристаллографически неэквивалентных молекул воды и одна молекула H₃O⁺. Заряд неорганического слоя $[(UO_2)_2(SeO_4)_4(H_2O)_2]^{4-}$ компенсируется атомами калия и молекулами оксония.

Работа выполнена при поддержке Программы Президиума РАН №8.