ВЗАИМОСВЯЗЬ ТЕКСТУРЫ И ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИКИ ПЛЁНОК ДИБОРИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ

А.В. Агулов

Донбасская государственная машиностроительная академия, Донецкая область, г. Краматорск, ул. Шкадинова, 72

Наноструктурные плёнки тугоплавких соединений (карбидов, нитридов и боридов) находят широкое применение для защиты поверхности изделий и инструмента, подвергающегося одновременному воздействию высоких температур, агрессивных сред и различных видов износа.

Важным преимуществом наноструктурных плёнок является то, что можно получить сверхтвёрдые материалы с одинаковой твёрдостью (Н), но различными значениями модуля упругости (Е). Для оценки стойкости материалов и упругой деформации разрушения используют величину отношения твёрдости к модулю упругости Н/Е, называемую также индексом пластичности материала, а для оценки сопротивления материала пластической деформации применяется параметр Н³/Е² [1]. В ряде работ сделана попытка определения взаимосвязи структуры с физико-механическими свойствами боридных плёнок. На рис. 1. приведены дифрактограммы наноструктурных плёнок диборида гафния, находящихся в различном структурном состоянии от аморфно-кластерной, до столбчатой с текстурой роста (00.1).

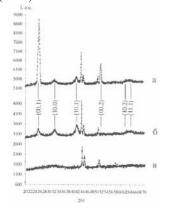


Рисунок 1. — Дифрактограммы пдёнок HfB_2 с различной степенью текстурированности.

Таблица 1. – Субструктура и физико-механические характеристики

No	1	ОКР (по Шеррера)	Н, ГПа	Е, ГПа	H/E	H ³ /E ²
la.	~20 нм	~30 нм	42	396	0,106	0,472
1б.	15÷20	15÷20	36	340	0,106	0,404
1в.	< 5 HM	< 5 HM	13	187	0,070	0,063

Описание к рисунку

- 1а. плёнка со столбчатой структурой;
- 1б. наноструктурная текстурированная плёнка;
- 1в. аморфно-кластерная плёнка.

Наиболее характерной морфологической особенностью формирования структуры плёнок диборидов переходных металлов синтезируемых PVD — методами является столбчатая структура с текстурой роста плоскостью (00.1) (рис. 1а) при этом, плёнки обладающие данной структурой имели наибольшее значение твёрдости \sim 44 ГПа (HfB₂), \sim 44 ГПа (TaB₂) [3], 42÷49 ГПа (CrB₂) [4], 59÷77 ГПа (TiB₂) [5]. Уменьшение степени текстуры приводит к снижению значения нанотвёрдости до 36 ГПа, что ранее уже имело место для плёнок TaB₂ [3]. Из приведенных результатов (табл. 1.) видно, что имеет место явно выраженная зависимость физико-механических характеристик от структурного состояния плёнки.

Литература

- 1. Д.В. Штанский, С.А. Кулинич, Е.А. Левашов, Ј.Ј.Мооге. Особенности структуры и физикомеханических свойств наноструктурных тонких плёнок ФТТ, 2003, т. 45, №6, с. 1122-1129.
- 2. P.H. Mayrhofer, C. Mitterer, J. Musil. Surf. and Coat. Technol. 2003, V. 174-175, p. 725-731.
- 3. Гончаров А.А., Коновалов В.А, Дуб С.Н., Ступак В.А., Петухов В.В. ФММ. 2009. №3.
- 4. Dahm K.L., Jordan L.R., Huase J. Surf. and Coat. Tech. 1998. V. 108-109, P. 413-418.
- 5. Kunc F., Musil J., Mayrhofer P.H., Mitterer C. Surf. And Coat. Techn. 2003 V. 174-175. P. 744-753.