Peculiarities of Intergranular Corrosion of Silicon-Containing Austenitic Stainless Steels
15.12.2008 г.

Peculiarities of Intergranular Corrosion of Silicon-Containing Austenitic Stainless Steels

O. V. Kasparova

 

Karpov Institute of Physical Chemistry, ul. Vorontsovo Pole 10, Moscow, 103064 Russia

Received January 23, 2004

 

Abstract — Experimental data collected for the past two decades and a half are generalized, and the mechanism of intergranular corrosion (IGC) of austenitic silicon-containing (quenched and sensitized) steels in the envi-ronments with various redox characteristics is discussed. The synergistic intensification of IGC by the alloying silicon additives and carbon admixtures is experimentally revealed. The cause of the bivariant effect of silicon on the resistance of grain boundaries in sensitized steels at active–passive transition potentials is clarified. The effect of silicon on the electronic structure of a solid solution (including intergranular domains) is supposed to account for some peculiarities in the electrochemical behavior of the steels.