INHIBITION EFFECTS OF METHIONINE AND TYROSINE ON CORROSION OF IRON IN HCl SOLUTION: ELECTROCHEMICAL,
02.03.2009 г.

INHIBITION EFFECTS OF METHIONINE AND TYROSINE ON CORROSION OF IRON IN HCl SOLUTION: ELECTROCHEMICAL, FTIR AND QUANTUM-CHEMICAL STUDY

 

S. Zor, F. Kandemirli, M. Bingul

 

Department of Chemistry, Kocaeli University, Kocaeli, 41380, Turkey

 

Поступила в редакцию 26.10.2007 г.

The inhibition effect of methionine and tyrosine on corrosion of iron has been researched by electrochemical ways in 0.1 M HCl and quantum chemical calculations were performed the level of HF with the 6-311G(d, p) basis set for methionine and tyrosine. Corrosion current density has been determined by polarization measures and the inhibition effect has been calculated. As the concentration of inhibitor increased, the effectiveness of inhibition has increased. The highest effectiveness of inhibition has been determined as 97.8% at 100 ppm methionine. The effect of temperature on methionine and tyrosine inhibition has been determined by chronoamperometric measures. By the way, as temperature increased, then current has increased. Surface analysis has been done with FTIR spectroscopy. Methionine and tyrosine adsorb on the iron surface according to Langmiur adsorption isotherm. The possible correlations among inhibition effectivenesses in 0.1 M HCl, The highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy, and Mulliken charges and atomic charges with hydrogens summed into heavy atoms of C, N, O, S atoms and of methionine, tyrosine and protonated forms have been examined.

Список литературы

  1. Chebabe D., Ait Chikh Z., Hajjaji N. et al. // Corros. Sci. 2003. V. 45. P. 309.
  2. Khaled K.F., Hackerman N. // Matter. Chem. Phys. 2003. V. 82. P. 949.
  3. Zor S., Yazici B., Erbil M. // Corros. Science. 2005. V. 47. P. 2700.
  4. Zor S., Dogan P., Yazici B. // Corros. Review. 2005. V. 23. P. 217.
  5. Zor S., Dogan P. // Corros. Rev. 2004. V. 22. P. 209.
  6. Zor S., Turk // J. Chem. 2002. V. 26. P. 403.
  7. Oguzie E.E., Li Y., Wang F.H. // J. Colloid and Interface Sci. 2007. V. 310. P. 90.
  8. Elayyachy M., Idrissi A. El., Hammoutt B. // Corros. Sci. 2006. V. 48. P. 2470.
  9. Yurt A., Bereket G., Ogretir C. // Theo Chem. 2005. V. 725. P. 215.
  10. Zerfaoui M., Oudda H., Hammouti B. et al. // Progress in Organic Coatings. 2004. V. 51. P. 134.
  11. Ashassi-Sorkhabi H., Ghasemi Z., Seifzadeh D. // Appl. Surface Sci. 2005. V. 249. P. 408.
  12. Silva A.B., Agostinho S.M.L., Barcia O.E. et al. // Corros. Sci. (in press).
  13. Badawy W.A., Ismail K.M., Fathi A.M. // Electrochim. Acta. 2006. V. 51. P. 4182.
  14. Bereket G., Yurt A. // Corros. Sci. 2001. V. 43. P. 1179.
  15. Bockris J.O., Swinkels D.A.J. // J. Electrochem. Soc. 1964. V. 11. P. 746.
  16. Lebrini M., Lagrenèe M., Vezin H. et al. // Corros. Sci. 2005. V. 47. P. 491.
  17. Fang J., Li J. // Journal of Molecular Structure (Theochem). 2002. V. 593. P. 179.
  18. Kandemirli F., Sagdinc S. // Corros. Sci. 2007. V. 49. P. 2118.
  19. Bereket G., Ogretir C., Yurt A. // Journal of Molecular Structure (Theochem). 2001. V. 571. P. 139.
  20. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03, Revision B.05. Wallingford CT: Gaussian, Inc, 2004.
  21. Munoz A.I., Anton J.G., Guinon J.L., Herranz V.P. // Elecrochim. Acta 2004. V. 50. P. 957.
  22. Badawy W.A., Ismail K.M., Fathi A.M. // J. Appl. Electrochem. 2005. V. 35. P. 879.
  23. Ramaekers R., Pajak J., Rospenk M., Maes G. // Spectrochim. Acta. Part A. 2005. V. 61. P. 1347.
  24. Luo H., Guan Y.C., Han K.N. // Corrosion. 1998. V. 54. P. 721.