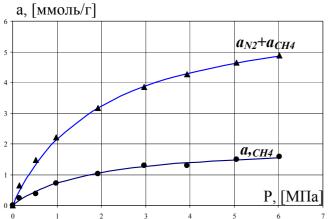
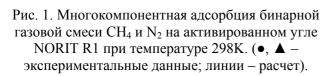
МОДЕЛИРОВАНИЕ РАВНОВЕСТНОЙ АДСОРБЦИИ БИНАРНОЙ ГАЗОВОЙ СМЕСИ НА МИКРОПОРИСТОМ АДСОРБЕНТЕ

А.В. Зуев, А.В. Твардовский


Тверской государственный технический университет, 170026, г. Тверь, наб. A.Никитина, 22 e-mail: tvardovskiy@tstu.tver.ru, lecobadm@mail.ru Работа выполнена при финансовой поддержке фонда РФФИ; грант № 09-03-97550


Предложено уравнение многокомпонентной адсорбции:

$$p = z \sum_{i=1}^{n} \left[(RT/(V_{i,a} - V_{Fi,a})) \exp(1 - \frac{q_{st,i}}{RT}) \right]^{-1},$$

где i - номер компонента, z - фактор сжимаемости газовой смеси, $V_{i,a}$ - молярный объем адсорбированного вещества, соответствующий изостерической теплоте $q_{st,i}$ для определенных T и p, $V_{Fi,a}$ - недоступный объем для движения моля молекул (компонент i) в адсорбированном веществе (эта характеристика является определенной функцией T и p). Было показано, что при определенных модельных предпосылках оно переходит в известные уравнения Генри, Лэнгмюра, Фаулера-Гуггенгейма, Темкина, БЭТ, обобщенные для многокомпонентной адсорбции.

На рисунках представлены экспериментальные результаты по многокомпонентной адсорбции и результаты моделирования адсорбции бинарной газовой смеси на основании вышеприведенного уравнения для микропористого адсорбента.

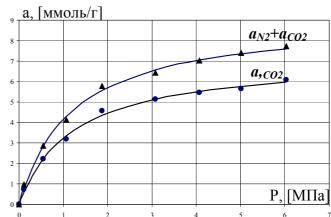


Рис. 2. Многокомпонентная адсорбция бинарной газовой смеси N₂ и CO₂ на активированном угле NORIT R1 при температуре 298K. (●, ▲ – экспериментальные данные; линии – расчет).

Следует отметить, что в газовой смеси CH_4 и N_2 (рис.1) поддерживалось постоянным соотношение 9 % к 91 % для CH_4 и N_2 соответственно, а для газовой смеси CO_2 и N_2 было постоянным соотношение концентрации 20 % для CO_2 и 80 % для N_2 (рис. 2).