Двухфотонный лазерный микроскоп

Материал из m-protect.ru

Перейти к: навигация, поиск

Двухфото́нный ла́зерный микроско́п — лазерный микроскоп, позволяющий наблюдать живые ткани на глубине более одного миллиметра, используя явление флуоресценции. Двухфотонный микроскоп является разновидностью мультифотонного флуоресцентного микроскопа. Его преимущества по сравнению с конфокальным микроскопом: большая проникающая способность, низкая степень фототоксичности.

В двухфотонном микроскопе луч инфракрасного лазера сфокусирован с помощью собирающей линзы объектива. Обычно используется высокочастотный 80 МГц сапфировый лазер, испускающий импульс с длительностью 100 фемтосекунд, обеспечивающей высокую плотность фотонного потока, которая необходима для двухфотонного поглощения.

Наиболее часто используемые флюорофоры имеют спектр возбуждения в промежутке 400-500 нм, в то время как длина волны возбуждающего лазера находится в промежутке 700-1000 нм (область инфракрасных волн). Если флюорофор поглотит одновременно два фотона, то он получит достаточно энергии, чтобы перейти в возбужденное состояние. Далее возбужденный флюорофор испустит один фотон (в видимой части спектра), длина волны которого зависит от типа флюорофора.

Так как поглощение двух фотонов необходимо для того, чтобы флюорофор перешёл в возбуждённое состояние, вероятность испускания флюорофором вторичного фотона пропорциональна квадрату интенсивности возбуждения. Поэтому флуоресценция будет сильнее в случае, когда луч лазера четко сфокусирован, а не рассеян. Максимальная флуоресценция наблюдается в фокальном объёме (объёме, где сфокусирован луч лазера) и демонстрирует резкое уменьшение в области вне фокуса.

Свет, испускаемый флюоресцирующим образцом, усиливается с помощью высокочувствительного фотоумножителя. Поскольку приёмник света является одноканальным, наблюдаемая в данном фокальном объеме интенсивность света формирует один пиксел изображения. Для того чтобы получить двухмерное пиксельное изображение, производится сканирование в фокальной плоскости образца.

Использование инфракрасного света для возбуждения флюорофора в исследуемых тканях имеет свои преимущества:

  • Длинные волны рассеиваются меньше, чем короткие, что обеспечивает высокое пространственное разрешение.
  • Возбуждающие фотоны имеют маленькую энергию, следовательно, они менее разрушительны для тканей (что продлевает жизнь исследуемой ткани).

Но есть и некоторые недостатки:

  • Для работы лазера требуются дорогие оптические приборы для обеспечения интенсивности импульса.
  • Двухфотонный спектр поглощения флюорофора может сильно меняться в отличие от однофотонного спектра поглощения.
  • Луч с длиной волны более 1400 нм значительно поглощается водой в живых тканях.
Личные инструменты