Индекс цитирования

Авторизация






Забыли пароль?

Обложка журнала

НОВОСТИ

(11/10) Ученые из ИФХЭ РАН и МГУ под руководством Ольги Виноградовой поняли, как «полосатая» гидрофобность..
   Ученые из ИФХЭ РАН и МГУ под руководством Ольги Виноградовой поняли, как «полосатая» гидрофобность меняет течение жидкости     ...
Read More ...
(11/10) Ученые обнаружили пути проникновения вирусов гриппа и ВИЧ в организм
Ученые ИФХЭ РАН, НИТУ МИСиС, МФТИ и ряда других российских научных организаций изучили и описали би...
Read More ...
(17/04) Курс “Анализ геномных данных”, Москва, 2 – 11 июля 2012
Уважаемые коллеги, Со 2 по 11 июля 2012 года Учебный центр Института биологии гена РАН организует практический десятидневный курс по статистическому анализу геномных дан...
Read More ...
(12/03) Впервые получено изображение атомов, движущихся в молекуле
Исследователи из Университетов Огайо и Канзаса впервые смогли получить изображения атомов, движущихся в молекуле. С помощью ультрабыстрого лазера исследователи выбивали элек...
Read More ...

Дефекты кристаллической решетки и нанотрубки Печать
(0 голосов)
26.04.2010 г.

Image

У современных специалистов в области нанотехнологий уже почти нет проблем в получении широкого круга наноразмерных объектов – нанопроводов, нанотрубок и даже «нано-деревьев». Однако, в настоящее время еще нет системы теоретических обобщений, позволяющей точно предсказать, как образуются эти объекты.

Схема реактора непрерывного потока (сверху), с помощью которого изучалось образование наноструктур и диаграммы сверхнасыщения (снизу). (Рисунок Science, 2010; 328 (5977): 476)

Исследовательская группа Сонг Хина (Song Jin) из Университета Висконсина-Мэдисона продемонстрировали, что простой дефект кристаллической решетки, известный как дислокация Бюргерса (винтовая дислокация - screw dislocation) направляет рост полой нанотрубки из оксида цинка.

Результаты открытия важны, так как они могут пролить свет на механизм образования наноразмерных объектов, что важно для создания теоретического фундамента нанонауки и нанотехнологии. Хин полагает, что сформулированные в ходе его исследования закономерности роста нанопроводов или нанотрубок в отсутствие металлических катализаторов могут быть применимы ко многим другим материалам.

Наноматериалы находят широкое применение в различных областях, таких как электроника, устройства для преобразования солнечной энергии в электрическую, лазерной технологии, химических и биологических сенсорах. Дальнейшая работа над совершенствованием теоретических обобщений особенностей формирования наночастиц может привести к разработке новых методов массового производства наноразмерных частиц из различных материалов.

По словам Хина и его коллег, образование наноразмерных объектов зависит от того, что называют дислокацией Бюргерса. Дислокации представляют собой основы для роста и характеристики всех кристаллических материалов. Дислокация Бюргерса или винтовая дислокация способствует образованию спиральных структур на ровной грани кристалла. Ранее Хин с коллегами продемонстрировал, что винтовая дислокация способствует образованию одномерных нанопроводов.

Ключевым моментом, объясняющим влияние дефектов на образование наноструктур является то, что спиральные дислокации вызывают напряжение, и растущий двумерный кристалл «изгибается», приводя к формированию структуры с полостью. Джин поясняет, что значительное напряжение, вызванное винтовой дислокацией, может приводить к самопроизвольному образованию нанотрубок.

Явление, описанное в новой работе исследователей из Висконсина, существенно отличается от устоявшихся представлений о механизме образования полых наноструктур и методах их получения. В настоящее время для получения полых нанообъектов, как правило, применяют шаблоны или диффузионные процессы, способствующие превращению нанообъектов одного типа в другие.

Исследователи из Университета Висконсина-Мэдисона надеются, что доработка теории сможет привести к созданию новых промышленных дешевых методов получения наноматериалов с широким спектром полезных свойств.

Источник:

1. Science, 2010; 328 (5977): 476 DOI: 10.1126/science.1182977

2.http://www.chemport.ru/datenews.php?news=2074