Индекс цитирования

Авторизация






Забыли пароль?

Обложка журнала

НОВОСТИ

(11/10) Ученые из ИФХЭ РАН и МГУ под руководством Ольги Виноградовой поняли, как «полосатая» гидрофобность..
   Ученые из ИФХЭ РАН и МГУ под руководством Ольги Виноградовой поняли, как «полосатая» гидрофобность меняет течение жидкости     ...
Read More ...
(11/10) Ученые обнаружили пути проникновения вирусов гриппа и ВИЧ в организм
Ученые ИФХЭ РАН, НИТУ МИСиС, МФТИ и ряда других российских научных организаций изучили и описали би...
Read More ...
(17/04) Курс “Анализ геномных данных”, Москва, 2 – 11 июля 2012
Уважаемые коллеги, Со 2 по 11 июля 2012 года Учебный центр Института биологии гена РАН организует практический десятидневный курс по статистическому анализу геномных дан...
Read More ...
(12/03) Впервые получено изображение атомов, движущихся в молекуле
Исследователи из Университетов Огайо и Канзаса впервые смогли получить изображения атомов, движущихся в молекуле. С помощью ультрабыстрого лазера исследователи выбивали элек...
Read More ...

Висмут катализирует рост оловосульфидных нанотрубок Печать
(0 голосов)
05.07.2009 г.

Image

С момента открытия углеродных нанотрубок в начале 1990-х эти нанообъекты находятся в фокусе пристального внимания исследователей. Помимо углерода нанотрубки можно получить и на основе других материалов. Нанотрубки могут применяться во многих областях, включая создание микроэлектронных схем, сенсоров, световодов и светоизлучающих устройств для мониторов.

Рисунок из Angew. Chem. Int. Ed., 2009, doi: 10.1002/anie.200900546

Группа исследователей под руководством Вольфганга Тремеля (Wolfgang Tremel) из Университета Майнца разработала новый процесс для производства оловосульфидных нанотрубок. Как сообщают исследователи, они заставили трубку расти из капли расплавленного металла.

Сульфиды металлов с ламинарной структурой, способные образовывать неорганические нанотрубки не представляют собой новое в техническом отношении решение. Такие объекты уже используются в медицине для создания ультрапрочных и при этом эластичных волокон, для хранения водорода, создания аккумуляторов, а также в катализе. Главная проблема получения сульфидных нанотрубок заключается в том, что для превращения плоских «листочков» в трубку требуются высокие температуры, получающиеся нанотрубки также необходимо быстро улавливать, чтобы предотвратить процесс их агломерации. Для сульфида олова такие подходы оказываются практически невозможными, так как SnS2 разлагается при низких температурах.

Исследователи из Майнца решили применить для получения оловосульфидных нанотрубок другой процесс: первоначально они использовали методику пары-жидкость-твердое [vapor–liquid–solid (VLS)], метод, обычно применяющийся для получения полупроводниковых нанопроводов. Для этого порошкообразный висмут смешивали с нанохлопьями сульфида олова и нагревали в трубчатой печи в потоке аргона. Продукт реакции осаждали на более холодном конце трубки.

В печи образовывались нанокапли висмута, эти капли играли роль зон локального контакта с оловом. Таким образом, участники реакции концентрировались внутри капли металла, которая затем служила центром кристаллизации для роста нанотрубки, которая росла из металлической сферы как волос из волосяной луковицы. Катализ с помощью металлической капли позволял «растить» нанотрубки и при низких температурах.

Новый метод позволил исследователям получить нанотрубки из нескольких слоев SnS2 с диаметром от 30 до 40 нм и длиной от 100 до 500 нм.

Источники:

1.  Angew. Chem. Int. Ed., 2009, doi: 10.1002/anie.200900546

2. ChemPort