ФОТОЭЛЕКТРОХИМИЧЕСКИЕ ЯЧЕЙКИ НА ОСНОВЕ КОММЕРЧЕСКОГО И СИНТЕЗИРОВАННОГО ГИДРОТЕРМАЛЬНЫМ СПОСОБОМ НАНОКРИСТАЛЛИЧЕСКОГО ТІО2

А.Л. Клюев

Лаборатория межфазных границ и электрокатализа ИФХЭ РАН, 119071, Москва, Ленинский проспект, д.31, корп. 5; e-mail: alexey.klyuev@phyche.ac.ru

В работе исследованы фотоэлектрические параметры Φ ЭХЯ на основе нанокристаллического диоксида титана, полученного по разным методикам. Установлено, что времена жизни носителей заряда (электронов) для Φ ЭХЯ на основе анодов из TiO_2 , полученного гидролизом ДЛТА, составляют 10 мсек, а для анодов из промышленного диоксида титана (AEROXIDE® TiO_2 P 25, Evonik) порядка 7 мсек, что указывает на более низкие рекомбинационные потери в случае анодов из ДЛТА. Транзитные времена для обоих вариантов ячейки были близки и составляли 10 мсек; при этом коэффициент диффузии электронов был оценен на уровне 10^{-5} см 2 ·сек $^{-1}$. Сопоставимое время транзита и время жизни электронов исследованных Φ ЭХЯ указывают на то, что часть фотогенерированных электронов теряется при диффузии на проводящую подложку.