«Нанокопья» для улучшения лазеров
13.08.2009 г.

Image

Выращивание и точное выстраивание микроскопических копьеобразных кристаллов оксида цинка на поверхности кремниевого монокристалла позволило исследователям из Университета Миссури разработать метод получения более эффективных солнечных батарей.

«Нанокопья» растут на поверхности кремния. (Рисунок из Chem. Mater., 2009, doi: 10.1021/cm9010019)

Джей Свитцер (Jay A. Switzer) с коллегами сообщает, что новый недорогой процесс сможет привести к разработке новых материалов, например, ультрафиолетовых лазеров или пьезоэлектрических устройств.

Исследователи из группы Свитцера вырастили «нанокопья» («nanospears») из оксида цинка на кремниевом монокристалле, помещенном в лабораторный стакан, содержащий щелочной раствор, насыщенный ионами цинка. В результате образуются наклонные монокристаллические копьевидные стержни, торчащие из поверхности кремния подобно крошечным пикам. Диаметр полученных нанокопий составляет 100-200 нанометров, а их длина – около одного микрометра.

Свитцер отмечает, что оксид цинка представляет собой полупроводник, обладающий рядом уникальных физических свойств. Материал способен как поглощать, так и испускать свет, поэтому он может использоваться и в солнечных батареях для поглощения солнечного света и в лазерах или твёрдотельных источниках света в качестве излучающего материала.

Кремний также является полупроводником, однако он поглощает свет в иной области спектра. По словам Свитцера, выращивание оксида цинка на поверхности кремния позволяет расширить область спектра, в которой солнечная батарея будет работать.

Предпринимавшиеся ранее попытки вырастить эпитаксиально ориентированный оксид цинка на поверхности кремния были затруднены вследствие необходимости использования дорогих методов, для которых требуется высокий вакуум, а также из-за высокой реакционной способности кремния, не позволяющей провести осаждение оксида цинка непосредственно на кремнии без третьего материала, берущегося в качестве «буфера».

Источники:

1. Chem. Mater., 2009, doi: 10.1021/cm9010019

2. ChemPort