Topology of Nanometric Graphite Films
21.10.2009 г.

Topology of Nanometric Graphite Films

 

A. V. Tyurnina*, D. V. Serov, and A. N. Obraztsov

Physical Faculty, Lomonosov Moscow State University, Moscow, 119992 Russia

*e-mail: Этот e-mail защищен от спам-ботов. Для его просмотра в вашем браузере должна быть включена поддержка Java-script

Received on March 12, 2009

 

Abstract — This work submits the results of a study in which the combinational scattering (CS) spectroscopy and electronic and optical microscopy of nanometric single-crystal graphite films obtained by precipitating in gas phase were used. It is shown the graphite material samples synthesized in this manner are fine, highly streamlined films that grow alongside of the substrate surface. The films feature a fairly smooth surface and thicknesses of 100–1 atomic layers. The study of the topologic properties of the material, such as the formation of folds along the entire surface and the occurrence of waveform ripples on some surface areas, showed that they may appear due to large differences in the carbon film and nickel substrate thermal expansion factors. The film thickness was assessed for the observed parameters of the periodic structures and the results comply with data obtained using other techniques. In some areas of the material in study, the graphene layers spontaneously split and form bubbles. The results of the CS analysis of various bubbles on studied film surfaces are evidence that, similar to the film itself, the walls of bubbles are composed of different numbers of graphite layers. It is shown that transparent bubbles in which meshlike topology is observed are formed with a single atomic layer.

PACS numbers: 81.16.Rf

DOI: 10.1134/S2070205109050104