Ферромагнетизм

Материал из m-protect.ru

(Различия между версиями)
Перейти к: навигация, поиск
(Новая: Ферромагнетизм, одно из магнитных состояний кристаллических, как правило, веществ, характеризуемое п...)
Строка 1: Строка 1:
-
Ферромагнетизм,
+
'''Ферромагнетизм''', одно из магнитных состояний кристаллических, как правило, веществ, характеризуемое параллельной ориентацией магнитных моментов атомных носителей магнетизма. Параллельная ориентация магнитных моментов (рис. 1) устанавливается при температурах Т ниже критической Q (см. Кюри точка) и обусловлена положительным значением энергии межэлектронного обменного взаимодействия (см. Магнетизм). [[Изображение:459020.jpg |frame|100px |left|Рис. 1 Ферромагнетизм]]Ферромагнитная упорядоченность магнитных моментов в кристаллах (атомная магнитная структура – коллинеарная или неколлинеарная) непосредственно наблюдается и исследуется методами магнитной нейтронографии. Вещества, в которых установился ферромагнитный порядок атомных магнитных моментов, называют ферромагнетиками. Магнитная восприимчивость (ферромагнетиков положительна (c > 0) и достигает значений 104–105 гс/э, их намагниченность J (или индукция В = Н +4pJ) растет с увеличением напряжённости магнитного поля Н нелинейно (рис. 2) и в полях 1–100 э достигает предельного значения Js – магнитного насыщения. Значение J зависит также от "магнитной предыстории" образца, это делает зависимость J от Н неоднозначной (наблюдается магнитный гистерезис).
-
одно из магнитных состояний кристаллических, как правило, веществ, характеризуемое параллельной ориентацией магнитных моментов атомных носителей магнетизма. Параллельная ориентация магнитных моментов (рис. 1) устанавливается при температурах Т ниже критической Q (см. Кюри точка) и обусловлена положительным значением энергии межэлектронного обменного взаимодействия (см. Магнетизм). Ферромагнитная упорядоченность магнитных моментов в кристаллах (атомная магнитная структура – коллинеарная или неколлинеарная) непосредственно наблюдается и исследуется методами магнитной нейтронографии. Вещества, в которых установился ферромагнитный порядок атомных магнитных моментов, называют ферромагнетиками. Магнитная восприимчивость (ферромагнетиков положительна (c > 0) и достигает значений 104–105 гс/э, их намагниченность J (или индукция В = Н +4pJ) растет с увеличением напряжённости магнитного поля Н нелинейно (рис. 2) и в полях 1–100 э достигает предельного значения Js – магнитного насыщения. Значение J зависит также от "магнитной предыстории" образца, это делает зависимость J от Н неоднозначной (наблюдается магнитный гистерезис).
+
[[Изображение:041870.jpg|frame|100px|right|Рис. 2 Ферромагнетизм]]
Проявления Ф. в монокристаллах и поликристаллах могут существенно различаться. В ферромагнитных монокристаллах наблюдается магнитная анизотропия (рис. 3) – различие магнитных свойств по разным кристаллографическим направлениям. В поликристаллах с хаотическим распределением ориентаций кристаллических зёрен анизотропия в среднем по образцу отсутствует, но при неоднородном распределении ориентаций она может наблюдаться (магнитная текстура).
Проявления Ф. в монокристаллах и поликристаллах могут существенно различаться. В ферромагнитных монокристаллах наблюдается магнитная анизотропия (рис. 3) – различие магнитных свойств по разным кристаллографическим направлениям. В поликристаллах с хаотическим распределением ориентаций кристаллических зёрен анизотропия в среднем по образцу отсутствует, но при неоднородном распределении ориентаций она может наблюдаться (магнитная текстура).
 +
Магнитные и другие физические свойства ферромагнетиков обладают специфической зависимостью от температуры Т. Намагниченность насыщения Js имеет наибольшее значение при Т =0 К и монотонно уменьшается до нуля при Т = Q (рис. 4).
 +
 +
Выше Q ферромагнетик переходит в парамагнитное состояние (см. Парамагнетизм), а в некоторых случаях (редкоземельные металлы) – в антиферромагнитное. При Н = 0 этот переход, как правило, является фазовым переходом 2-го рода. Температурный ход магнитной проницаемости m (или восприимчивости c) ферромагнетиков имеет явно выраженный максимум вблизи Q. При Т >Q восприимчивость (обычно следует Кюри – Вейса закону. При намагничивании ферромагнетиков изменяются их размеры и форма (см. Магнитострикция). Поэтому кривые намагничивания и петли гистерезиса зависят от внешних напряжений. Наблюдаются также аномалии в величине и температурной зависимости упругих постоянных, коэффициентов линейного и объёмного расширения. При адиабатическом намагничивании и размагничивании ферромагнетики изменяют свою температуру (см. Магнитное охлаждение). Специфические особенности немагнитных свойств ферромагнетиков наиболее ярко проявляются вблизи Т = Q.
 +
 +
Поскольку самопроизвольная намагниченность ферромагнетиков сохраняется до Т =Q, а в типичных ферромагнетиках температура (может достигать ~ 103 К, то kQ " 10-13 эрг (k – Больцмана постоянная). Это означает, что энергия взаимодействия, которая ответственна за существование ферромагнитного порядка атомных магнитных моментов в кристалле, тоже должна быть порядка 10-13эрг на каждую пару соседних магнитно-активных атомов. Такое значение энергии может быть обусловлено только электрическим взаимодействием между электронами, ибо энергия магнитного взаимодействия электронов двух соседних атомов ферромагнетика не превышает, как правило, 10-16 эрг, и поэтому может обеспечить температуру Кюри лишь ~ 1 К (такие ферромагнетики с т. н. дипольным магнитным взаимодействием тоже существуют). В общем случае магнитные взаимодействия в ферромагнетиках определяют их магнитную анизотропию. Классическая физика не могла объяснить каким образом электрическое взаимодействие может привести к Ф. Только квантовая механика позволила понять тесную внутреннюю связь между результирующим магнитным моментом системы электронов и их электростатическим взаимодействием, которое принято называть обменным взаимодействием.
 +
 +
Необходимым условием Ф. является наличие постоянных (независящих от Н)магнитных (спиновых или орбитальных, или обоих вместе) моментов электронных оболочек атомов ферромагнетиков. Это выполняется в кристаллах, построенных из атомов переходных элементов (атомов с недостроенными внутренними электронными слоями). Различают 4 основных случая:
 +
 +
1) металлические кристаллы (чистые металлы, сплавы и интерметаллические соединения) на основе переходных элементов с недостроенными d-cлоями (в первую очередь 3d-cлоем у элементов группы железа); 2) металлические кристаллы на основе переходных элементов с недостроенными f-cлоями (редкоземельные элементы с недостроенным 4f-cлоем); 3) неметаллические кристаллические соединения при наличии хотя бы одного компонента из переходных d- или f-элементов; 4) сильно разбавленные растворы атомов переходных d- или f-металлов в диамагнитной металлической матрице. Появление в этих четырёх случаях атомного магнитного порядка обусловлено обменным взаимодействием.
 +
 +
В неметаллических веществах (случай 3) это взаимодействие чаще всего носит косвенный характер, при котором магнитный порядок электронов недостроенных d-или f-cлоев в ближайших соседних парамагнитных ионах устанавливается при активном участии электронов внешних замкнутых слоев магнитно-нейтральных ионов (например, O2-, S2-, Se2- и т.п.), расположенных обычно между магнитно-активными ионами (см. Ферримагнетизм). Как правило, здесь возникает антиферромагнитный порядок, который приводит либо к компенсированному антиферромагнетизму, если в каждой элементарной ячейке кристалла суммарный магнитный момент всех ионов равен нулю, либо к ферримагнетизму – если этот суммарный момент не равен нулю. Возможны случаи, когда взаимодействие в неметаллических кристаллах носит ферромагнитный характер (все атомные магнитные моменты параллельны), например EuO, Eu2SiO4, CrBr3 и др.
 +
 +
Общим для кристаллов типа 1, 2, 4 является наличие в них системы коллективизированных электронов проводимости. Хотя в этих системах и существуют подмагничивающие обменные взаимодействия, но, как правило, магнитного порядка нет, а имеет место парамагнетизм паулевского типа, если он сам не подавлен более сильным диамагнетизмом ионной решётки. Если всё же магнитный порядок возникает, то в случаях 1, 2 и 4 он различен по своему происхождению. Во втором случае магнитно-активные 4f'-cлои имеют очень малый радиус по сравнению с параметром кристаллической решётки. Поэтому здесь невозможна прямая обменная связь даже у ближайших соседних ионов. Такая ситуация характерна и для четвёртого случая. В обоих этих случаях обменная связь носит косвенный характер, осуществляют её электроны проводимости. В четвёртом типе ферромагнетиков (в отличие от случаев 1, 2, 3) магнитный порядок не обязательно связан с кристаллическим атомным порядком. Часто эти ферромагнетики представляют собой в магнитном отношении аморфные системы с неупорядоченно распределёнными по кристаллической решётке ионами, обладающими атомными магнитными моментами (т. н. спиновые стекла).
 +
 +
Наконец, в кристаллах 1-го типа электроны, принимающие участие в создании атомного магнитного порядка, состоят из бывших 3d- и 4s-электронов изолированных атомов. В отличие от 4f'-cлоёв редкоземельных ионов, имеющих очень малый радиус, более близкие к периферии 3d-электроны атомов группы Fe испытывают практически полную коллективизацию и совместно с 4s-электронами образуют общую систему электронов проводимости. Однако в отличие от нормальных (непереходных) металлов, эта система в d-металлах обладает гораздо большей плотностью энергетических уровней, что благоприятствует действию обменных сил и приводит к появлению намагниченного состояния в Fe, Со, Ni и в их многочисленных сплавах.

Версия 18:22, 30 января 2009

Ферромагнетизм, одно из магнитных состояний кристаллических, как правило, веществ, характеризуемое параллельной ориентацией магнитных моментов атомных носителей магнетизма. Параллельная ориентация магнитных моментов (рис. 1) устанавливается при температурах Т ниже критической Q (см. Кюри точка) и обусловлена положительным значением энергии межэлектронного обменного взаимодействия (см. Магнетизм).
Рис. 1 Ферромагнетизм
Рис. 1 Ферромагнетизм
Ферромагнитная упорядоченность магнитных моментов в кристаллах (атомная магнитная структура – коллинеарная или неколлинеарная) непосредственно наблюдается и исследуется методами магнитной нейтронографии. Вещества, в которых установился ферромагнитный порядок атомных магнитных моментов, называют ферромагнетиками. Магнитная восприимчивость (ферромагнетиков положительна (c > 0) и достигает значений 104–105 гс/э, их намагниченность J (или индукция В = Н +4pJ) растет с увеличением напряжённости магнитного поля Н нелинейно (рис. 2) и в полях 1–100 э достигает предельного значения Js – магнитного насыщения. Значение J зависит также от "магнитной предыстории" образца, это делает зависимость J от Н неоднозначной (наблюдается магнитный гистерезис).
Рис. 2 Ферромагнетизм
Рис. 2 Ферромагнетизм

Проявления Ф. в монокристаллах и поликристаллах могут существенно различаться. В ферромагнитных монокристаллах наблюдается магнитная анизотропия (рис. 3) – различие магнитных свойств по разным кристаллографическим направлениям. В поликристаллах с хаотическим распределением ориентаций кристаллических зёрен анизотропия в среднем по образцу отсутствует, но при неоднородном распределении ориентаций она может наблюдаться (магнитная текстура). Магнитные и другие физические свойства ферромагнетиков обладают специфической зависимостью от температуры Т. Намагниченность насыщения Js имеет наибольшее значение при Т =0 К и монотонно уменьшается до нуля при Т = Q (рис. 4).

Выше Q ферромагнетик переходит в парамагнитное состояние (см. Парамагнетизм), а в некоторых случаях (редкоземельные металлы) – в антиферромагнитное. При Н = 0 этот переход, как правило, является фазовым переходом 2-го рода. Температурный ход магнитной проницаемости m (или восприимчивости c) ферромагнетиков имеет явно выраженный максимум вблизи Q. При Т >Q восприимчивость (обычно следует Кюри – Вейса закону. При намагничивании ферромагнетиков изменяются их размеры и форма (см. Магнитострикция). Поэтому кривые намагничивания и петли гистерезиса зависят от внешних напряжений. Наблюдаются также аномалии в величине и температурной зависимости упругих постоянных, коэффициентов линейного и объёмного расширения. При адиабатическом намагничивании и размагничивании ферромагнетики изменяют свою температуру (см. Магнитное охлаждение). Специфические особенности немагнитных свойств ферромагнетиков наиболее ярко проявляются вблизи Т = Q.

Поскольку самопроизвольная намагниченность ферромагнетиков сохраняется до Т =Q, а в типичных ферромагнетиках температура (может достигать ~ 103 К, то kQ " 10-13 эрг (k – Больцмана постоянная). Это означает, что энергия взаимодействия, которая ответственна за существование ферромагнитного порядка атомных магнитных моментов в кристалле, тоже должна быть порядка 10-13эрг на каждую пару соседних магнитно-активных атомов. Такое значение энергии может быть обусловлено только электрическим взаимодействием между электронами, ибо энергия магнитного взаимодействия электронов двух соседних атомов ферромагнетика не превышает, как правило, 10-16 эрг, и поэтому может обеспечить температуру Кюри лишь ~ 1 К (такие ферромагнетики с т. н. дипольным магнитным взаимодействием тоже существуют). В общем случае магнитные взаимодействия в ферромагнетиках определяют их магнитную анизотропию. Классическая физика не могла объяснить каким образом электрическое взаимодействие может привести к Ф. Только квантовая механика позволила понять тесную внутреннюю связь между результирующим магнитным моментом системы электронов и их электростатическим взаимодействием, которое принято называть обменным взаимодействием.

Необходимым условием Ф. является наличие постоянных (независящих от Н)магнитных (спиновых или орбитальных, или обоих вместе) моментов электронных оболочек атомов ферромагнетиков. Это выполняется в кристаллах, построенных из атомов переходных элементов (атомов с недостроенными внутренними электронными слоями). Различают 4 основных случая:

1) металлические кристаллы (чистые металлы, сплавы и интерметаллические соединения) на основе переходных элементов с недостроенными d-cлоями (в первую очередь 3d-cлоем у элементов группы железа); 2) металлические кристаллы на основе переходных элементов с недостроенными f-cлоями (редкоземельные элементы с недостроенным 4f-cлоем); 3) неметаллические кристаллические соединения при наличии хотя бы одного компонента из переходных d- или f-элементов; 4) сильно разбавленные растворы атомов переходных d- или f-металлов в диамагнитной металлической матрице. Появление в этих четырёх случаях атомного магнитного порядка обусловлено обменным взаимодействием.

В неметаллических веществах (случай 3) это взаимодействие чаще всего носит косвенный характер, при котором магнитный порядок электронов недостроенных d-или f-cлоев в ближайших соседних парамагнитных ионах устанавливается при активном участии электронов внешних замкнутых слоев магнитно-нейтральных ионов (например, O2-, S2-, Se2- и т.п.), расположенных обычно между магнитно-активными ионами (см. Ферримагнетизм). Как правило, здесь возникает антиферромагнитный порядок, который приводит либо к компенсированному антиферромагнетизму, если в каждой элементарной ячейке кристалла суммарный магнитный момент всех ионов равен нулю, либо к ферримагнетизму – если этот суммарный момент не равен нулю. Возможны случаи, когда взаимодействие в неметаллических кристаллах носит ферромагнитный характер (все атомные магнитные моменты параллельны), например EuO, Eu2SiO4, CrBr3 и др.

Общим для кристаллов типа 1, 2, 4 является наличие в них системы коллективизированных электронов проводимости. Хотя в этих системах и существуют подмагничивающие обменные взаимодействия, но, как правило, магнитного порядка нет, а имеет место парамагнетизм паулевского типа, если он сам не подавлен более сильным диамагнетизмом ионной решётки. Если всё же магнитный порядок возникает, то в случаях 1, 2 и 4 он различен по своему происхождению. Во втором случае магнитно-активные 4f'-cлои имеют очень малый радиус по сравнению с параметром кристаллической решётки. Поэтому здесь невозможна прямая обменная связь даже у ближайших соседних ионов. Такая ситуация характерна и для четвёртого случая. В обоих этих случаях обменная связь носит косвенный характер, осуществляют её электроны проводимости. В четвёртом типе ферромагнетиков (в отличие от случаев 1, 2, 3) магнитный порядок не обязательно связан с кристаллическим атомным порядком. Часто эти ферромагнетики представляют собой в магнитном отношении аморфные системы с неупорядоченно распределёнными по кристаллической решётке ионами, обладающими атомными магнитными моментами (т. н. спиновые стекла).

Наконец, в кристаллах 1-го типа электроны, принимающие участие в создании атомного магнитного порядка, состоят из бывших 3d- и 4s-электронов изолированных атомов. В отличие от 4f'-cлоёв редкоземельных ионов, имеющих очень малый радиус, более близкие к периферии 3d-электроны атомов группы Fe испытывают практически полную коллективизацию и совместно с 4s-электронами образуют общую систему электронов проводимости. Однако в отличие от нормальных (непереходных) металлов, эта система в d-металлах обладает гораздо большей плотностью энергетических уровней, что благоприятствует действию обменных сил и приводит к появлению намагниченного состояния в Fe, Со, Ni и в их многочисленных сплавах.

Личные инструменты